
FINAL EXAM—SOLUTIONS KEY

JAVIER CARVAJAL-ROJAS

Exercise 1. Recall that

A1
C = SpecC[x] = Spec

(
Z[x]⊗ C

)
Then, A1

C ×R A1
C is the spectrum of:(

Z[x]⊗ C
)
⊗R
(
Z[y]⊗ C

) ∼= (Z[x]⊗ Z[y]
)
⊗ (C⊗R C) ∼= Z[x, y]⊗ (C× C)

where we used that C = R[t]/(t2 + 1) to see that:

C⊗R C ∼= C[t]/(t2 + 1) = C[t]/(t− i)(t+ i) ∼= C× C

where the last isomorphism follows from the Chinese reminder theorem.
In this way, we have that A1

C ×R A1
C is isomorphic to the spectrum of

Z[x, y]⊗ (C× C) ∼=
(
Z[x, y]⊗ C

)
×
(
Z[x, y]⊗ C

) ∼= C[x, y]× C[x, y].

In other words, A1
C×RA1

C is isomorphic to the disjoint union of two copies of A2
C = SpecC[x, y]

and hence disconnected. See [Har77, II, Exercise 2.19].

Exercise 2. Since k is algebraically closed, the points of A1 = Spec k[t] correspond to the
ideals (t−a) ⊂ k[t] with a ∈ k; which are the closed points, and the zero ideal 0 ⊂ k[t]; which
defines the generic point η. Let’s denote the point of A1 corresponding to (t− a) by xa.

The fiber of f at xa is the spectrum of

k[x, y, z]⊗k[t] k[t]/(t− a) ∼= k[x, y, z]/(x2 + y − a) ∼= k[x, z]

which is an integral domain. Therefore, the fiber of f at xa is irreducible and so has exactly
one irreducible component.

It remains to analyze the generic fiber. The fiber of f at η is the spectrum of the following
ring

k[x, y, z]⊗k[t] k(t) ∼= W−1k[x, y, z]

where W ⊂ k[x, y, z] is the multiplicative system given by nonzero polynomials in x2 + y with
coefficients in k.1 Since localizations of integral domains are integral domains,2 the generic
fiber is irreducible and so has only one irreducible component.

Summing up, f has no non-irreducible fiber. In other words, all fibers of f have exactly
one irreducible component.

Exercise 3.

1That is, W is the image of k[t]r 0 under λ. It’s important to notice that λ is injective.
2In fact, W−1k[x, y, z] is a nonzero subring of k(x, y, z)
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(1). Suppose, for the sake of contradiction, that Mp is not torsion-free. Then, there are
0 6= a/f ∈ Ap and 0 6= m/g ∈Mp such that

a

f
· m
g

=
am

fg
= 0 ∈Mp,

which implies that there is h ∈ Ar p such that

ham = 0 ∈M.

Since M is torsion-free and m 6= 0, we conclude that ha = 0. However, this implies that
a/f = 0 ∈ Ap; which is a contradiction.

(2). Since the problem is local, we may assume that X = SpecA where A is a noetherian
local normal domain of dimension 1 (this uses part (1)). That is, we may assume that A is
a DVR and so a PID.3 Further, we may say F = M̃ that where M is a finitely generated
A-module that is torsion-free. By using the structure theorem for finitely generated modules
over PIDs, we conclude that M is free; as required.

(3). Let X = A2 = SpecC[x, y] and F = M̃ where M = (x, y) ⊂ C[x, y]. Note that M is
clearly torsion-free (as C[x, y] is an integral domain). However, M is not locally free. Indeed,
since X is connected, if M were locally free the function p 7→ ϕ(p) = dimk(p)Mp/pMp would

be constant on SpecC[x, y]; see [Har77, II, Exercise 5.8. (c)]. However, ϕ
(
(0)
)

= 1 whereas

ϕ
(
(x, y)

)
= 2.

Exercise 4.

(1). Consider the following exact sequence of graded S-modules:

0 −→ S(−d)
·f−→ S −→ S/f −→ 0

Applying the exact functor (̃−) to it yields the required exact sequence:

(0.1) 0 −→ OPn
k
(−d) −→ OPn

k
−→ ι∗OX −→ 0

Recall that, by construction [Har77, II, Exercise 3.12, Corollary 5.16 (a) and its proof], for all

homogeneous ideal I ⊂ S, applying (̃−) to the graded quotient S −→ S/I yields j# where j is

the induced closed immersion j : ProjS/I −→ ProjS.4 More generally, one has j∗(Ñ) ∼= S̃N ;
see [Har77, II, Proof of Proposition 5.12 (c)].

(2). Recall that (by definition) ι∗OPn
k
(1) = OX(1) and so ι∗OPn

k
(r) = OX(r) for all r. Hence,

twisting (0.1) by OPn
k
(r) and using the projection formula yields the following exact sequence

(0.2) 0 −→ OPn
k
(r − d) −→ OPn

k
(r) −→ ι∗OX(r) −→ 0

Indeed, one uses the projection formula [Har77, II, Exercise 5.1. (d)] to obtain the following
isomorphism:5

ι∗OX ⊗OPn
k
(r) ∼= ι∗

(
OX ⊗ ι∗OPn

k
(r)
)

= ι∗
(
OX ⊗OX(r)

)
= ι∗OX(r).

3The normality hypothesis is very important here. In fact, the statement doesn’t hold without it. For instance,
consider A = k[x, y]/x2 − y3 and M = (x, y).
4Indeed, Ĩ is the ideal sheaf corresponding to the closed immersion determined by j, which means that

OProjS/Ĩ = S̃/I is j∗OProjS/I .
5One could also use [Har77, II, Proposition 5.12 (c)].
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The short exact sequence (0.2) yields the following long exact sequence on cohomologies

· · · −→ H i
(
Pn
k ,OPn

k
(r−d)

)
−→ H i

(
Pn
k ,OPn

k
(r)
)
−→ H i

(
Pn
k , ι∗OX(r)

)
−→ H i+1

(
Pn
k ,OPn

k
(r−d)

)
−→ · · ·

Now, using the simultaneous vanishings

H i
(
Pn
k ,OPn

k
(r)
)

= 0 and H i+1
(
Pn
k ,OPn

k
(r − d)

)
= 0

for all 0 < i < n− 1, we conclude that

H i
(
Pn
k , ι∗OX(r)

)
= 0

for all 0 < i < n− 1. However,

H i
(
Pn
k , ι∗OX(r)

)
= H i(X,OX(r)),

say by [Har77, III, Lemma 2.10]. This solves the exercise.
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